The Fluvial and Climatic History of Northeast Syrtis Major Mesas: Go-to Mission to Icy Mars

J.R. Skok and Jack Mustard

3rd Mars2020 Landing Site Workshop

February 9th, 2017

Northeast Syrtis Stratigraphy

Northeast Syrtis Stratigraphy

1. Distributed sources → Precipitation

- 1. Distributed sources → Precipitation
- 2. Basin's existence → Ice Sheets

- 1. Distributed sources → Precipitation
- 2. Basin's existence → Ice Sheets
- 3. Outlet channels → Episodic Ice Dams

Northeastern Syrtis Major Mesas

Northeast Syrtis Major Mesas are spatially concentrated time capsules that record critical events in the Pre-Noachian, Noachian and Hesperian.

Crater-retaining cap

Boulder-shedding slopes Exposing light-toned blocks

Olivine-carbonate unit

Fe/Mg-phyllosilicate basement

Characterize geologic history of astrobiologically relevant site/units

- 3 distinct, time-ordered formations (mafic cap, carbonate, basement); one with 3 subunits (megabreccia basement massive basement, Al-phyllosilicate weathering horizon) are mappable from orbit for easy rover direction
- ~250 Myr Noachian to Hesperian historical record is the earliest accessible and well-understood in the context of Mars history, bounded by the Isidis impact event and Syrtis Major volcanism (with still older megabreccia)

Assess habitability/past life in units with high biosignature preservation potential

- Regionally extensive carbonates represent either near-subsurface mineralization of host rock or travertine-like mineral springs precipitation – either has high biosignature preservation potential
- The Noachian clay basement and breccia blocks preserve rocks from when Mars had a magnetic field and thicker atmosphere. Cross-crossing veins point to available water in a continuously habitable environment the NE Syrtis paleo-aquifer is a good place to search for mineralized life

Cache scientifically compelling samples

- **4 aqueous environments** (early clays, early carbonates, weathering horizons, *go-to sulfate sediments*) have distinct astrobio. potential, record of atm. evolution, volatile sequestration for traditional, clumped isotopes
- 4 age-date bins for Martian chronology (1) Isidis-formed melt within Noachian basement, (2) regional olivine-rich unit, (3) dark-toned mafic cap rock, (4) Syrtis lava front (go-to)
- 3 lithologies record **Igneous** evolutionary history from **Pre-Noachian** to **Early Hesperian**, with distinct low-Ca pyroxene, olivine enriched (komatiite-type hot lava or mantle xenolith), high-Ca pyroxene lavas